2,652 research outputs found

    Effects of Applied Strain on Rates of Ageing: Project Overview

    Get PDF
    One of the stated intents of this project has been to make some assessment of effects of strain on rates of ageing of project thermoplastics exposed to project fluids. To this end, certain straining jigs which apply in various modes - tensile, four-point bending and crack growth using compact tension samples - were designed and made for holding samples during fluid exposures. During testing, features of the thermoplastics have been observed which have tended to confuse apparent strain effects on the polymers' aged performance, but recent assessments of the topic and its data have led to considerable progress being made in identifying test procedures necessary for strain and related effects on chemical deterioration to manifest themselves. It is the intent of this report to provide a summary of what has been determined on strain and related effects thus far, and provide recommendations for clarifying them in Phase 2 by means of further test procedures which will increase and focus the severity of the conditions applying. The choice of flexible pipe rather than umbilicals service for assessing service strain conditions reflects the major interest of project members. However, Tefzel data are still provided

    Translating pharmacogenetics and pharmacogenomics to the clinic: progress in human and veterinary medicine

    Get PDF
    As targeted personalized therapy becomes more widely used in human medicine, clients will expect the veterinary clinician to be able to implement an evidence-based strategy regarding both the prescribing of medicines and also recognition of the potential for adverse drug reactions (ADR) for their pet, at breed and individual level. This review aims to provide an overview of current developments and challenges in pharmacogenetics in medicine for a veterinary audience and to map these to developments in veterinary pharmacogenetics. Pharmacogenetics has been in development over the past 100 years but has been revolutionized following the publication of the human, and then veterinary species genomes. Genetic biomarkers called pharmacogenes have been identified as specific genetic loci on chromosomes which are associated with either positive or adverse drug responses. Pharmacogene variation may be classified according to the associated drug response, such as a change in (1) the pharmacokinetics; (2) the pharmacodynamics; (3) genes in the downstream pathway of the drug or (4) the effect of “off-target” genes resulting in a response that is unrelated to the intended target. There are many barriers to translation of pharmacogenetic information to the clinic, however, in human medicine, international initiatives are promising real change in the delivery of personalized medicine by 2025. We argue that for effective translation into the veterinary clinic, clinicians, international experts, and stakeholders must collaborate to ensure quality assurance and genetic test validation so that animals may also benefit from this genomics revolution

    Tropomyosin Flexural Rigidity and Single Ca2+ Regulatory Unit Dynamics: Implications for Cooperative Regulation of Cardiac Muscle Contraction and Cardiomyocyte Hypertrophy

    Get PDF
    Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca2+, troponin, and tropomyosin on the thin filament. While Ca2+ regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca2+ regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease

    Mechanical and Physical Properties of Both Unaged and Aged Coflon and Tefzel

    Get PDF
    This report deals with all recent mechanical testing performed on variously aged samples of Coflon and TefzeL to complete the work for Phase 1. Earlier results were reported in CAPP/M.7. Fluids A, F, G, and I have all been used for ageing in the last 12 month period, with particular attention concentrated on the effects of Fluid F as a result of discussions at the December 1995 steering committee meeting in Austin. Dramatic mechanical and physical changes occurred to Coflon in our initial studies after 4 weeks at 120 C in this sour gas mixture and so a detailed matrix was drawn up to investigate the effects of time and temperature of exposure. Subsequent tensile tests and compact tension (CT) fatigue tests were performed. Fatigue testing has been limited during this period to Coflon only; however, Tefzel CT samples have been exposed to the same conditions as the Coflon allowing the possibility for fatigue tests to be performed at a later date. Fluid A exposures during the last 6 months have been long-term at 65 C, 100 C and 120 C only. These exposures have been a continuation of earlier work and will complete the investigation of this fluid. Other chemical ageings have involved Fluid G at 120 C to confirm and investigate the hostile nature of this fluid on Coflon. Again, this fluid will not be used in Phase 2. Finally, long-term exposures in Fluid 1, a high aromatic oil mixture, were carried out to investigate the effects on the polymers of aromaticity in a simulated service fluid

    Optical orientation of spins in GaAs:Mn/AlGaAs quantum wells via impurity-to-band excitation

    Get PDF
    The paper reports optical orientation experiments performed in the narrow GaAs/AlGaAs quantum wells doped with Mn. We experimentally demonstrate a control over the spin polarization by means of the optical orientation via the impurity-to-band excitation and observe a sign inversion of the luminescence polarization depending on the pump power. The g factor of a hole localized on the Mn acceptor in the quantum well was also found to be considerably modified from its bulk value due to the quantum confinement effect. This finding shows the importance of the local environment on magnetic properties of the dopants in semiconductor nanostructures

    Spin gating electrical current

    Full text link
    We use an aluminium single electron transistor with a magnetic gate to directly quantify the chemical potential anisotropy of GaMnAs materials. Uniaxial and cubic contributions to the chemical potential anisotropy are determined from field rotation experiments. In performing magnetic field sweeps we observe additional isotropic magnetic field dependence of the chemical potential which shows a non-monotonic behavior. The observed effects are explained by calculations based on the kp\mathbf{k}\cdot\mathbf{p} kinetic exchange model of ferromagnetism in GaMnAs. Our device inverts the conventional approach for constructing spin transistors: instead of spin-transport controlled by ordinary gates we spin-gate ordinary charge transport.Comment: 5 pages, 4 figure
    corecore